

Kalray MPPA MANYCORE[®] A new era of computing for embedded application

Embedded System Symposium Tokyo, Oct 16-18, 2013

Laurent Julliard, Director Solutions and Software Services

Presentation Outline

- Kalray company and vision
- The MPPA MANYCORE processor and its architecture
- Software programming models
- Application domains

Kalray at a glance

- Founded in 2008 located in Paris, Grenoble (France), Tokyo (Japan), Sunnyvale (USA)
- Kalray Japan created 2011, headed by Kazumi SUGIYAMA President
- 55+ people (45 in R&D)
- Multi-Purpose Processing Array technology MPPA MANYCORE[®]
- Independent hardware and software technology
- Portfolio of 64 patents
- Targeting the industrial embedded and computing intensive markets

Kalray's Vision

From FPGA / ASIC TO MANYCORE processor

FPGA, ASIC, SoC

- Millions gates
- Hard programming

The breakthrough : move from a hardware world made of IP blocks to a generic, scalable computing platform capable based on software components

First MPPA®-256 Chips with CMOS 28nm TSMC 256 Processing Engine cores + 32 Resource Management cores

In production

- High processing performance
 - 700 GOPS 230 GFLOPS
- High energy Efficiency
 - 5W Typical
 - Advanced power management
- Execution time predictability
- Architecture and software scalability
- Software programmable
 - High level programming models
 - Advanced debugging and tracing

MPPA MANYCORE Roadmap Architecture scalability for high performances and low power

C KALRAY

A Global Product Offer

Powerful, Low Power and Programmable Processors

C/C++ based Software Development Kit (SDK) for massively parallel programing

Development platform Reference Design Board

Reference Design board Application specific boards Multi-MPPA or Single-MPPA boards

Application Domains

Kalray also serves the **Academic market** (universities and research institutions)

MPPA MANYCORE architecture

MPPA[®]-256 Processor Architecture 3 levels of parallelism on a single chip

MPPA®-256 Processor Architecture 3 levels of time determinism

MPPA®-256 Processor I/O Interfaces

- DDR3 Memory interfaces
- PCIe Gen3 interface
- IG/10G/40G Ethernet interfaces
- SPI/I2C/UART interfaces
- Universal Static Memory Controller (NAND/NOR/SRAM)
- GPIOs with Direct NoC Access
- NoC extension through Interlaken interface (NoC Express)

MPPA[®] fits high performance, time constrained embedded applications

- Architectural support
 - K1 VLIW core
 - Amenable to precise static timing analysis
 - Multi-banked memory
 - Conflict-free accesses on address ranges
 - Network-on-chip QoS
 - Guaranteed bandwidth
 - Bounded latency
 - High-speed interfaces
 - Stream data in/out of the MPPA through NoC
- Tools and library support
 - Cyclostatic Dataflow programming language and compiler
 - OpenCL implementation with real-time processing extension (2014)

Software Programming Models

Kalray Software Development Kit MPPA® ACCESSCORE – MPPA® ACCESSLIB

Dataflow Programming Environment

- Language Sigma-C is a superset of C99
- Computation blocks and communication graph written in C
- Cyclostatic data production & consumption
- Task and/or data parallelism

Automatic mapping on MPPA[®] memory, computing, & communication resources

NO Charlest REA REA PEA REA

C KALRAY

Standard

- POSIX-like process management
 - Spawn 16 processes from the I/O subsystem
 - Process execution on the 16 clusters start with main(argc, argv) and environment
- Inter Process Communication (IPC)
 - POSIX file descriptor operations on 'NoC Connectors'
 - Inspired by supercomputer communication and synchronization primitives
- Multi-threading inside clusters
 - Standard GCC/G++ OpenMP support
 - #pragma for thread-level parallelism
 - Compiler automatically creates threads
 - POSIX threads interface
 - Explicit thread-level parallelism

State of the art Debug/Profile/Trace toolsls

P Control_1	Context Selector Buffer Sizes Scheduling Interactive placer Mapped Buffer Sizes PlacebRoube
Identity_197 [MULTI INLINE	Name Rema_TotalBuffers stad: code data 1 12 - m m 6r 0. C. C. A
Antenna 2	Workstation with MPF 8.1 GB 22.8 19.5 3.26 1.46 KB 120 b *
Dup_194	← □ Workstation N*0 4.09 2.21 420 1.8 M8 0 bytes 0 bytes
dentity_196	Compute Cluster N 38.31.4 MB 1.34 56 KB 0 bytes 0 bytes
oin_195 (MULTI INLINED)	Compute Cluster N 112 1.31. 1.1 M6 213.0 0 bytes 12 by Blucclask NV generating generating generating basis
rocessing_3	Dup_712.611.86256 b500 b12 by
SDispatch_antenna_4	Beanform_ono773
Preprocess_tbf_7	Dup_rz [inume410 410 0 bytes 0 bytes
Preprocess_tbf_6	Beamform_tbf2431 418 12.68 0 brtes 0 brtes
Preprocess_tbf_8	Beamform_tbl2 431 418 12.68 0 bytes 0 bytes
Eeamform_tbf3_129	Beamon Corz 4.9 420 12:06 0 0/tes 0 0/tes
EBeamform_tbf2_69	Inseamorm_torz
- ElfeamSplit_70	
← 200p_71	Boardison (2012 - 73 Jun 120 01 12 59 0 10 10 10 10 10 10 10 10 10 10 10 10 1
* 228eamform_circular_t	050110010_U02 _ 15700 124.00 (0 0105 0 0102)
+ WReamform_circular_t	1094/mi0/m_tutz - 439 420
EDup, 73 [INLINED]	
► 200 up.72 [INUNED]	Beamform_UD2 _ +99 +20 12.000 DrUss 0 DrUss
> 208eamform_tbf2_sen	Deamform the Ass Also 12 68 O holds of blocks
· arBeamform_tbf2_sen	Baamform that A21 A12 12 60 Obther O bother
- inBeamform_tbr2_sen	Canting and 2215 2015 AIR Obtain Data
- ILBeamform_tbr2_sen	Reamform and 2018 2018 AVE O betas O betas
- affeamform_tbf2_sen	Calendary and 2018 AVR Date O bate
- auseamrorm_tbr2_sen	Baardium add 2218 2818 A18 Obites Obites
* 22Beamform_tbf2_sen	
BBeamform_Ubf2_sen	Beautim add 2218 2818 AV8 0 bries 0 bries
Beamform_ubf2.sen	Beamform add 32 KB 28 KB 4 KB 0 bittes 0 bittes
Beamform thf) can	Beamform add 32 IB 28 KB 4 KB 0 brites 0 brites
TReamform thf? (an	Beamform add 16 KB 12 KB 4 KB 0 brtas 0 brtas
BReamform thf? can	Beamform add 16 KB 12 KB 4 KB 0 brites 0 brites
Beamfarm thf3 can	Bearriorm sele 60.0. 56.0. 4 KB 0 brtes 0 brtes
TReamform thf? ren	← C Compute Cluster > 321 1.13 1.13 4 KB 0 bytes 0 bytes
SPRaymform thf? ran	← C Compute Cluster N 5.12 1.41 1.2 M8 217.0 0 bytes 12 by
Silleamform thf2 sen	Compute Cluster * 328 1.13 1.12 256 b 0 brites 12 by
+ Silkeamform thf2 sen	Compute Cluster # 425 1.02 973 168.7 0 bytes 0 bytes
- Reamform thf2 sen	Compute Cluster A 228 1.22 1.2 M8 16.25 0 bytes 12 by
~ Reamform thf2 sen	Compute Cluster & 307 1.13 991 168.7 0 bytes 0 bytes
+ SEReamform thf2 sen	Compute Cluster N 237 1.21 1.19 24 K8 0 bytes 0 bytes
- IReamform thf2 sen	Compute Cluster N 261 1.19 1.18 12.25500 b 12 by
Beamform thf2 sen	Compute Cluster N 34.3 1.41 1.41 4 K8 0 bytes 0 bytes
- EReamform thf2 sen	← C Compute Cluster 8: 595
- SEBeamform thf2 sen	I ← Compute Cluster № 31.2 1.38 1.14 249.0 0 bytes 12 by
- Beamform_thf2_sen	Compute Cluster & 450 101 838 176.7 0 bytes 0 bytes
+ SEReamform adder th	Compute Cluster A. 81.1 1.36 1.27 100 K8 0 bytes 0 bytes
100 anotare adder th	2 D. Committee & Charlins & L. A.E
A CERC CROSTE	
In SPES. PORIS	

Application Performance Analysis >

< Application Mapping Analysis

Sample Applications

Running Demos at ESS 2013

Feature points (Harris + Sirf) 30 fps / 1080p / 2 clusters

Line detection (Hough Transform)

Edge Detection (Sobel Filter)

120fps /1080p / 2 clusters

Pedestrian detection (Viola-Jones)

Thank you for your attention www.kalray.eu

Come meet us at our booth

