Kalray MPPA MANYCORE®
A new era of computing for embedded application

Embedded System Symposium
Tokyo, Oct 16-18, 2013
Laurent Julliard, Director Solutions and Software Services
Presentation Outline

- Kalray company and vision
- The MPPA MANYCORE processor and its architecture
- Software programming models
- Application domains
Kalray at a glance

- Founded in 2008 – located in Paris, Grenoble (France), Tokyo (Japan), Sunnyvale (USA)
- Kalray Japan created 2011, headed by Kazumi SUGIYAMA President
- 55+ people (45 in R&D)

- Multi-Purpose Processing Array technology **MPPA MANYCORE®**
- Independent hardware and software technology
- Portfolio of 64 patents

- Targeting the *industrial embedded and computing intensive markets*
Kalray’s Vision

From FPGA / ASIC TO MANYCORE processor

FPGA, ASIC, SoC
- Millions gates
- Hard programming

Manycore processor
- 1000s of cores
- Soft programming

The breakthrough: move from a hardware world made of IP blocks to a generic, scalable computing platform capable based on software components
First MPPA®-256 Chips with CMOS 28nm TSMC
256 Processing Engine cores + 32 Resource Management cores

- High processing performance
 - 700 GOPS – 230 GFLOPS
- High energy Efficiency
 - 5W Typical
 - Advanced power management
- Execution time predictability
- Architecture and software scalability
- Software programmable
 - High level programming models
 - Advanced debugging and tracing

In production
MPPA MANYCORE Roadmap
Architecture scalability for high performances and low power

2012
28nm

MPPA®-256 V1

1st core generation
40 GFLOPS/W – 400MHz

2014
20nm

MPPA®-256 V2

2nd core generation
80 GFLOPS/W – 700MHz

2015
16nm

MPPA®-1024

3rd core generation
100 GFLOPS/W – 850MHz

MPPA®-64

Low Power
12W

Low Power
5W / 2.6W

Very Low Power
1.8W / 0.6W
Idle 75mW
A Global Product Offer

Powerful, Low Power and Programmable Processors

C/C++ based Software Development Kit (SDK) for massively parallel programming

Development platform
Reference Design Board

Reference Design board
Application specific boards
Multi-MPPA or Single-MPPA boards
Application Domains

INTENSIVE COMPUTING
- Oil and Gas
- Finance
- Numerical Simulation
- Life sciences

IMAGE & VIDEO
- Video Broadcast
- Medical Imaging
- Digital Cinema
- Vision, Video surveillance

EMBEDDED SYSTEMS
- Transport
- Signal Processing
- Aerospace/Defence
- Industrial Automation

TELECOM
- Network Traffic Analysis
- Security Services
- Software Defined Radio
 (Market under investigation)

Kalray also serves the **Academic market** (universities and research institutions)
MPPA MANYCORE architecture
MPPA®-256 Processor Architecture
3 levels of parallelism on a single chip

Instruction Level Parallelism
(Thread Level Parallelism)
(Process Level Parallelism)

VLIW Core

Compute Cluster

Manycore Processor
MPPA®-256 Processor Architecture
3 levels of time determinism

- Time Compositional Core (repeatable execution times)
- Flat Memory Hierarchy
 Conflict free memory access
- Network-on-chip Quality of Service

VLIW Core
Compute Cluster
Manycore Processor

MPPA has high execution predictability
MPPA®-256 Processor I/O Interfaces

- DDR3 Memory interfaces
- PCIe Gen3 interface
- 1G/10G/40G Ethernet interfaces
- SPI/I2C/UART interfaces
- Universal Static Memory Controller (NAND/NOR/SRAM)
- GPIOs with Direct NoC Access
- NoC extension through Interlaken interface (NoC Express)
MPPA® fits high performance, time constrained embedded applications

- Architectural support
 - K1 VLIW core
 - Amenable to precise static timing analysis
 - Multi-banked memory
 - Conflict-free accesses on address ranges
 - Network-on-chip QoS
 - Guaranteed bandwidth
 - Bounded latency
 - High-speed interfaces
 - Stream data in/out of the MPPA through NoC

- Tools and library support
 - Cyclostatic Dataflow programming language and compiler
 - OpenCL implementation with real-time processing extension (2014)
Software Programming Models
Kalray Software Development Kit

MPPA® ACCESSCORE – MPPA® ACCESSLIB

<table>
<thead>
<tr>
<th>Today</th>
<th>Q4 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td>Windows</td>
</tr>
</tbody>
</table>

Key Features

- **Standard C/C++ Programming Environment**
- **Dataflow Programming**
 - FPGA Style
- **Simulators, Profilers, Debuggers & System Trace**
- **POSIX-Level Programming**
 - DSP Style
- **Operating Systems & Device Drivers**
- **Streaming Programming**
 - GPU Style
Dataflow Programming Environment

- Language Sigma-C is a superset of C99
- Computation blocks and communication graph written in C
- Cyclostatic data production & consumption
- Task and/or data parallelism

Automatic mapping on MPPA® memory, computing, & communication resources
Sigma-C Agent Example

agent Inverter()
{
 interface
 {
 in<unsigned char> input; /* input byte stream */
 out<unsigned char> output; /* output byte stream */
 }
 spec{input; output};

 void invert (void) exchange (input pel_in, output pel_out)
 {
 pel_out = 255 - pel_in;
 }

 void start ()
 {
 invert();
 }
}

agent keyword followed by the name of the agent

interface section for input/output channels

state machine specification for data production & consumption

exchange keyword flags direct operations on input/output channels

standard C code within the agent

start function is an infinite loop
POSIX-Level Programming Environment

- POSIX-like process management
 - Spawn 16 processes from the I/O subsystem
 - Process execution on the 16 clusters start with main(argc, argv) and environment

- Inter Process Communication (IPC)
 - POSIX file descriptor operations on ‘NoC Connectors’
 - Inspired by supercomputer communication and synchronization primitives

- Multi-threading inside clusters
 - Standard GCC/G++ OpenMP support
 - #pragma for thread-level parallelism
 - Compiler automatically creates threads
 - POSIX threads interface
 - Explicit thread-level parallelism
State of the art Debug/Profile/Trace tools

Application Mapping Analysis

Application Performance Analysis
Sample Applications
Running Demos at ESS 2013

Feature points (Harris + Sirf)
30 fps / 1080p / 2 clusters

Edge Detection (Sobel Filter)
120fps / 1080p / 2 clusters

Line detection (Hough Transform)

Pedestrian detection (Viola-Jones)
Thank you for your attention
www.kalray.eu

Come meet us at our booth